source: fedd/abac-src/ttg/README @ 0b4e272

axis_examplecompt_changesinfo-opsversion-2.00version-3.01version-3.02
Last change on this file since 0b4e272 was 8780cbec, checked in by Jay Jacobs <Jay.Jacobs@…>, 15 years ago

ABAC sources from Cobham

  • Property mode set to 100644
File size: 4.1 KB
RevLine 
[8780cbec]1ABAC Demo Distribution README
2$Date: 2003/07/16 16:26:48 $
3
4documents - contains papers and presentations relating to ABAC.
5
6rbtm - contains java source for a credential management system which is used by
7       the by the ABAC packages. This code base was originally developed at
8       Stanford University with modifications made at Network Associates
9       Laboratories. For more information, see the automatically generated
10       documentation (javadoc) in the docs directory.
11
12        * IntersectionProofNode currently only supports backward searching. 
13          Forward searching is need for a complete implementation of
14          distributed discovery.
15
16ttg -+  contains java source code for the the ABAC packages. This code base
17     |  was developed at Network Associates Laboratories.
18     |
19     +-- docs - automatically generated javadoc html goes here.
20     |
21     +-- test - contains launch script and *.txt configuration files.
22     |    |     Configuration files are grouped into different scenarios and
23     |    |     may also contains scripts "go*" or test to launch a test.
24     |    |
25     |    +-- simple - simple Swedish and EPub (e-commerce) scenarios
26     |    |
27     |    +-- failed - examples of failure cases
28     |    |
29     |    +-- intersect - simple policies extended to include intersections
30     |    |
31     |    +-- linked - intersection policies extended to included linked
32     |    |            roles with and without linking goals.
33     |    |
34     |    +-- heuristic_strategy - two scenarios: sweden1 and usdod, each
35     |    |                        are designed to exercise the heuristic,
36     |    |                        stingy strategy (see below)
37     |    |
38     |    +-- rtml - examples similar to linked above which incorporate RTML
39     |               credential stores and distributed discovery of RTML
40     |               credentials using distributed disovery
41     |
42     +-- demo - tomcat servlet source code and configuration and distributed
43     |          discovery servlet which allows access to the discovery service.
44     |
45     +-- INSTALL - installation notes for building and installing the demo
46
47atnvis -+ contains the visualization package in atnvis.jar (also relies on
48        | grappa.jar from AT&T Research  which is available at
49        | http://www.research.att.com/~john/Grappa/ )
50        |
51        +- demo - the demo configuration (*.prop) files generated from the
52        |         TestEngine class.
53        |
54        +- graphviz - the grappa java packages rely on GraphViz. Windows and
55        |             Linux binaries are included for convenience. Grappa and
56        |             GraphViz are licensed identically. Please see the README
57        |             file in this directory for more information.
58        |
59        +- strategy_comparison - visualization results for using various
60                                 strategies in the same scenario (USSH vs
61                                 SAdmir).
62
63
64Strategy Configuration
65======================
66
67The test engine supplied with this package can be easily configured with text
68files. The [Strategy] section has several configurable parameters; for example,
69add this on a single line "type=default".  Note the left hand side parameter
70should be all lower case.
71
72    type - set the type of strategy to use: "default" or "stingy", where the
73           the default is a breadth first search. Stingy refer to the
74           history-based, heuristic strategy. The remaining parameter types
75           are only useful when the "stingy" strategy is selected.
76
77    weightFile - a file name for loading and storing the weights used in the
78                 stingy strategy's algorithm.
79
80    init - a single-precision floating point number for the initial value of
81           new weights.
82   
83    sat - a single-precision floating point number to which a role's weight
84          is set if the role is contained in a target that is satisfied at the
85          end of a negotiation.
86 
87    training - "true" or "false" to tell the stingy strategy whether to
88               save the set of weights generated by the current negotiation
Note: See TracBrowser for help on using the repository browser.